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Research Note

Wrapping Data for Querying

A. Fatholahzadeh!

Various tools and systems for querying are developed and available for applications. In this
paper, breaking away from the conventional querying, a new technique, Q2, is presented in which
querying is allowed by user's style sheets via the long strings, which may contain the implicit
information. For mining tasks of the query processing, our own wrapper is proposed, composed
of two components: 1) A set of Functional Dependency Plots (FDP) of data; 2) A Metabase: A
database containing the storage-orders of used data. In order to speed up the query processing,
other new ingredients have been incorporated in Q2; 3) A lexicon of terms including technical
jargon; 4) A Knowledge Base System (KBS), dealing with declarative and background knowledges
for identifying relevant databases with respect to the query at hand; 5) Encoder: For obtaining
variable (column) names of the selected databases by KBS; 6) Decoder: For translating some
KBS terms via the lexicon in order to be usable by the encoder; 7) Interpolator: A mathematical
tool using FDP for outputting the response of the queries. Q2 has been implemented using
the C language and NEXPERT tool and has been applied to the interpretation of laser-material

experiments.

INTRODUCTION

With more and more databases created, an increasingly
pressing issue is how to make efficient use of them. To
address the efficiency issue, there has been a recent
surge of research interest on knowledge discovery and
data mining {1-5]. In [4], an algorithm has been
proposed to deal with data aspects in the knowledge
discovery process for identifying relevant databases.
The authors argue that the first step for multi-database
mining is to identify databases that are the most likely
to be relevant to an application. However, in [4] the
task is to select the databases relevant to a given
query predicate rather than identifying the databases
matching the query.

In this work, the identification of relevant
databases matching the queries expressed in user style
sheets will be addressed and it will be argued that using
our wrapper contributes to the efficiency aspect of the
query processing. The allowed style sheet in this work
is one or more templates. A template is just a long
string. A long string is a set of keys (e.g. “Renault 21
TD”). A key (noted by k) is referred to as a sequence of
characters surrounded by empty spaces but containing

1. Supélec-Campus de Metz, 2, rue Edouard Belin, 57078
Metz, France.

no internal space. A typical example of such query
could be the following style sheet: “Renault 21 TD"
(or “Renauit-21-TD") and “5000-6000 Euros”; a self
explanatory query (just compare its easiness with a
program written in, say, SQL) referring to a particular
car with a limited budget, which could be used in
commercial transactions.

Although Querying by Long Strings (QLS) has
the advantage of being syntax free, this makes the prob-
lem of the query processing all the more difficult, since
the long strings may contain the implicit information
from more general to make more specific. Therefore,
when querying by long strings, the mining task is to
explicit the implicit information with respect to the
query at hand.

Among various data mining tasks (classification,
characterization, association, etc.), most of them aim
at discovering knowledge that can be expressed as
relationships among values of attributes. For example,
classification rules, characteristic rules and association
rules can be expressed in the form of A — B,
where both A and B are conjunctions of attribute
values. Queries can easily take care of these forms of
knowledge.

In this work, data mining tasks of the physical
systems are of interest, which can be characterized by
general knowledge of the form y = f(x1, - z,) where
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r; denotes a variable. To our knowledge, no work on
mining tasks of such systems, with respect to the query
processing, has been reported in the literature.

It may happen that several values become as-
sociated with the same variable, due to the different
conditions of the experimentations and, in particular,
these values become recorded into the same database
under different columns (names of attributes). Table 1
shows such a database, where three facets of the
same variable, namely ﬁ%, are given and where the
abbreviations of T and PD stand for the time and the
power density (of a Carbon-Resin laser). In this paper,
such variable will be called multi-facets-attribute.

Without loss of generality, each database is called
a relation or table and it is assumed that people are
likely to pose queries using their own style sheets rather
than expressing them via a query language (e.g. SQL)
and the user is supposed to have partial knowledge (i.e.
rough idea) of the category (e.g. car) to which querying
is applied. Note that the second assumption is not a
requirement in this work, as one has the possibility of
using the suggested templates by Q2 to pose the queries
to Q2.

In this paper, the problem of the quality in user-
controlled querying will not be addressed, since it is
similar to that of user-controlled navigation of WWW
communities. Recently, in [6], the use of free-syntax
long strings is advocated, as the style specifications
of this model is new. Quality in user-controlled
navigation remains the biggest challenge for search
engines [7]. So, efficient processing of long strings
helps to improve the quality. This is because the long
strings of the query constrain web browsing, search and
navigation using the user’s own background knowledge.
User-controlled navigation has been studied by several
researchers from the WWW communities, under the
name of spiders, crawlers, robots, knowbots and so
on. In [8] a kind of style using C++ is given. The
modification of the query language, SQL, to operate
on the web, is proposed in [9]. A system which piggy-
backs onto a Lycos browser is described in [10].

In this paper, the relevance problem will be ad-
dressed: Identifying databases relevant to a particular
data mining task in multi-database and matching the
query with selected relevant databases. It is important
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to note that unlike the method described in [4], the
technique in this paper takes care of the multi-facets-
attributes and regarding conventional query process-
ing, the query predicate is expressed in the form of a
template (i.e. long string) rather than using the syntax
of a given query language (e.g. SQL).

PRELIMINARIES

The query template is denoted by @, such as “Group
is Chinese” and “How long does it take to perforate
.7, etc. Let it be supposed that one is equipped with
a function, namely, Transform Query (Q;) outputting
the query predicate, @, such that @ can be expressed
in the form of “A relop C”, where A is an attribute
name, relop is one of the relational operators {=, >, <,
<,>,#} and C is a value in its domain.

If the attribute A is not referred by the query
predicate @, where C is a constant value in the domain
of A, then the form “A relop C” will be called a selector
(noted by s).

A long string will be called a selector template
and will be denoted by s; if it can be transformed into
a selector. An example of s; is the form of: “diameter
(of the steel) is 2 mm”.

Note that unlike in [4], in this work the constant
value of an attribute, C, of a selector is not necessarily
and explicitly present in one or more databases. If any,
the relevant functional dependency plot will be used
for outputting the response of the query.

The problem described in this paper can be stated
as follows: Given n data tables (relations), D (1 < k <
n), each of which consists of a number of attributes, a
query template (); and one or more selector templates,
s¢. Perform the following tasks: Identify relevant tables
(relations) that contain specific information pertaining
to the query template Q; and match Q, with selected
relevant databases.

Related Work on Identifying Relevant
Databases

There may be an objection as to why not employ a
brute force approach to join the available tables into
a single large table upon which existing techniques or

Table 1. Carbon-resin database (the data are fictitious).

AF | §5 =950 W/cm? | 5 =500 W/cm? | 5 = 240 W/cm?
1066 151.30 81.70 323.00

1035 278.00 150.30 464.00

990 462.00 249.80 220.30

941 669.00 358.10 581.70

837 940.00 508.50 667.00

R R R Ri(mixed order)
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tools can be applied. There are several problems for
this approach in real-world applications. Prima facie is
the database integration, especially where the source
domains differ. Second, all tables with foreign key
references need to be joined together to produce a single
combined table. The size of the resulting table, in
terms of both the number of records and the number of
attributes, will be much larger than the original tables.
The increase of data size not only penalizes the running
time of mining algorithms, but also affects the behavior
of mining algorithms.

From the viewpoint of statistics, joining one rele-
vant database with an irrelevant database will result in
a more difficult task to find useful patterns, as search
space is enlarged by irrelevant attributes. Suppose that
there are two binary-valued databases and each has n
attributes, assuming that one database is irrelevant and
% attributes can be found in both databases. Simply
working on the relevant database, hypothesis space is
4™, after joining, it is 4% . Note that this analysis is
a simplified one, because the factor of a missing value
due to joining, is not considered. If any, this factor will
also certainly increase the difficulty of the task.

Liu et al. [4] developed a method to select the rele-
vant databases. The method is based on a quantitative
measure of the relevance of the query @, which, in turn,
is based on the Relevance Factor (RF) of the selector, s.
RF of s such as “drink = tea”, with respect to @, such
as, “group = Chinese”, is defined by a probabilistic
method. The mining task of the method depends on
choosing a value for the threshold, §. For example, let
it be assumed that in a given database, say diet habit,
there are two columns of “group” and “drink”. If one
thinks that for inferring knowledge such as, “drink =
tea — group = Chinese” there should be at least 80 %
of the data satisfying the premise part of the mentioned
rule, then that database is relevant to the query “group
= Chinese”, with respect to the selector “drink = tea”.

WRAPPER

A wrapper is a reservoir of useful information-telephone
directories, product catalogs, stock quotes etc., which
can be used as the important part of the retrieval
information’s engine for providing multiple tasks, in-
cluding querying. Recently, in the WWW communi-
ties, many systems have been built that automatically
gather and manipulate such information on the user’s
behalf. In {11] a method of wrapper induction is given.
However, to the author’s knowledge, the design and
the utilization of the wrapper for the query processing
appears to be new.

As mentioned earlier, the wrapper described in
this paper, is composed of two reservoirs: the first one
is the set of the Functional Dependency Plots (FDP)
of data. The second reservoir is a special database
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called metabase. Each FDP relates one or more multi-
facet-attributes and describes the dependency between
the different facets of two variables of a class/object
(e.g. CO,, Carbon-Resin) belonging to category (e.g.
laser) at hand. Furthermore, each FDP is generated
using a graphical tool (e.g. gnuplot) whereas the
second reservoir is formed manually. Take note of the
graphical curves depicted by Figure 1 and suppose an
interest in using it for querying purpose, such as the
following:

How long does it take to perforate a 2 mm thick
sheet of steel with a CO5 laser irradiation of 3500
W /cm??

Regarding the present query, obviously, it is
desirable to exploit the dependency between the times
of the perforations of a particular polished steel and
the intensities of CO»-laser using the (discrete) data of
Figure 1 and, in particular, as much as possible, gener-
alize such an approach. The processing of this task is
based on the concept of functional dependency, which
was introduced in the theory of relational databases
(see [12]) in the seventies, and it has been commonly
used in the logical database design ever since (see
e.g. [13-15]). In [16], this concept was applied to the
field of knowledge representation.

A functional dependency states that in all models
of a theory, the value of a variable is a function of
values of some other variables. Thus, the existence
of a functional dependency is an important property
of the theory. If a functional dependency holds in a
theory, then it may be possible to simplify the theory
by eliminating the variable, whose value is determined
by other variables. The repeated applications of this
procedure will result in a so-called “condensed” theory,
which does not have any functional dependencies and
may have much fewer variables than the original theory.
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Figure 1. Graphical curves (interpolator) showing the
dependency between the times of the perforation of the
polished steel and the intensity of COgz-laser.
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Note that, in general, the condensed theory can be
harder to reason with.

According to the principle of the condensed the-
ory, which is idealized in the following terms: “use
fewer variables than those of the original theory”,
instead of recording the data associated with every
facet of a variable, only the data of one facet was
kept for each variable. For instance, instead of having
two variables for the thickness of the material in the
CO; table, having 1 mm and 2 diameters, only the
data of 1 mm was retained in the mentioned table. If
the query refers to a material with the thickness of
2 mm (ie. C = 2 mm), after having determined the
response for C = 1 mm via the relevant database, the
interpolator of the same database is used to calculate
the searched value. The last line of Table 2 gathers
the storage order of the data in columns 1 to 4 of the
carbon-resin database of Table 1, which are decreasing,
increasing and mixing, respectively. Table 2 shows a
part of the metabase with respect to the application
at hand, namely, laser-material interaction. The first
column (field) of the metabase starts always with a
symbol, namely either/or # and is followed by the
name of a database. The symbol ‘/’ is served to
gather the similarity of the storage-orders that may
exist between the data of two or more databases.
Therefore, for instance, the first line of Table 2 means
that the storage-orders of ‘acirect’ should be searched
via the storage-orders of another, namely ‘acirpol’. The
symbol ‘#’ is used for directly giving the information
related to the storage-orders. For instance, the storage-
orders of ‘acirpol’ are shown in the second line of
Table 2, where the characters ‘' and ‘-’ are used as
the separators between the used tokens (e.g. AF as an
abbreviation of applied force).

The content of the ith column of the metabase is
of the following form:

ABR(var;) — ABR{(par;) = p; : 1 : ord;

where ABR(var;) stands for the abbreviation of the
1th variable located at the ¢th field of the metabase.
“ord;” is a symbol (<, >,!) to denote one storage-order
of the numerical data. If a column can be characterized
with a parameter, the notation ABR(par;) = p; is
used, where p; denotes the value associated with that

Table 2. Part of the metabase with respect to
laser-material interactions. The last line summarizes the
storage-orders of the data of Table 1.

[acirect acirpol
#acipol T-:1:> AF-:2:>
/audgel acipol

/audpo acipol
#acipo PD-:1:>T-TH=1:2:< FL-TH:1:3:!
#carbres AF-:1: < T-PD=950:2: >T-PD=500:3:> T-PD=240:3:!
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parameter. If not (i.e. m parameters are necessary),
then the following form is used for the description of
the th column:

ABR(var;)— ABR(par} =p; ...par™ = p?):i:ord;.

As seen in the next section, the necessity of using
one or more parameters is dictated by the insufficiency
of having only the name of the tables and the name
of the current attribute(s) of a query when trying to
identify the relevant databases.

The metabase can be viewed as a reservoir con-
taining the storage orders of the data of those multi-
databases having multi-facet-attributes. In general,
knowing if a database has the above criteria is based
on recognition of the identical attributes (i.e. sub-
strings) that may exist between the names of the
columns (i.e. variables). For instance, this happens
among the second, third and fourth attributes of
Table 1 due to A = %. So, for those databases
with multi-facet-attributes, the metabase described in
this paper allows the heterogeneous databases to be
transformed into “virtually” homogeneous ones, as
appears in Table 2 which allows the direct addresses
of the attributes to be gathered for efficient use later
in the query processing. The reader familiar with join-
processing algorithms would notice that having such
above direct addresses allows one to reduce the time
of join operations whereas, if one performs the join
operations using a traditional approach, as mentioned
in the previous section, that time increases.

ALGORITHM

In this section, first, the procedure of query-recognition
is described, then, cooperation between the mentioned
procedure and KBS for outputting the query-response
is discussed.

Recognition of User-Query

Each long string of the query and the selector(s) is
examined by way of the recognition of all keys of that
long string. For faster processing of key-recognition,
as well as associating a value for each recognized key,
instead of using the conventional methods, such as
hash-code techniques or transducer omnes, the author’s
method was used, which was first sketched in [17], then
described, along with algorithms, in [18]. This work has
also been applied to other applications [19,20].

The essence of this method for faster processing
of the keys and values associated with the keys, is as
follows: Although finite-state transducers {21,22] can
be used to map a language onto a set of values, the au-
thor’s approach is based on an alternate representation
method for such a mapping, consisting of associating
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a finite-state automaton (g) and accepting the input
language (i.e. the set of the keys denoted by K) with
a decision tree (dt)representing the output values. The
advantages of this approach are that it leads to more
compact representations than transducers and decision
trees can easily be synthesized by machine learning
techniques. The reader unfamiliar with automata
theory and machine learning is referred to [23,24]
and [25,26], respectively.

The recognition of the query is performed by the
function “Query Recognition”, which works as follows:
Split each long string according to the space separator
(or dash, if any) and collect the keys into a list of keys
(lk). Spell out each key using g and this time, search
its value, using dt.

If a key is unknown (i.e. K ¢ K) and if it is an
integer, then attach ‘INT’ as the abbreviation to the
key, otherwise stop the processing. Collect the pair of
(k, v) into a list, noted by Ip, where v stands for an
output value. Repeat the above step while adding new
Ip to the previous one. It may happen that due to
some abbreviations (e.g. PD i.e. power density and T
i.e. time), the gathering rules will be called upon. An
example of such a rule is as follows: If k; = ‘I’ and
ks = ‘PD’, then, form a new key (k), attach a new
value to k and update [p.

func QueryRecognition()
Ip — 0; nk — 0; lspk — @,
for each long string (Is) of the query do
Ik — Split (Ils);
for each k in lk do
if SpellOut (k, g) then
v «— SearchValue (k, dt);
Collect (k,v) into Is;
else
if IsSpecialKey (k) then
Collect nk into Ispk; else exit;
end if
end if
nk4+;
end for
end for
if lspk # 0 then
ApplyGatheringRules();
end if

cnuf

Cooperation with KBS

Two large bodies of declarative knowledge are present:
Databases and background knowledge. Background
knowledge contains domain specific information, used
to supply qualitative information about the scope of
the knowledge system. Background knowledge guides
toward the proper files, whereas data knowledge leads
to the proper fields, in a given file (database). Figure 2
illustrates an external object description of the quan-
titative (numerical) files. In order to allow properties
to be inherited down from classes to subclasses and
from classes to objects, NEXPERT’s default strategy
is used.
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Class name

NumPFile: 4

Property nam
FileName: ] operty name
LasType:
MatName: A

FileDesc:
FieldDesc:
AuxFDesc:

y
PerfoFile

— Inheritance link

COg4 PerfoFile

LasType: COg
FieldDesc:
“pow-dens,
duration,
fluence”

Metal-COg Perfo NonMetal-COqPerfo

FilfDesc: . ablation_rate:

pp gend pow_ma

AuxFDesc: pow_min:
“thickness”

Objects

Figure 2. Part of quantitative data file representation.

The databases (quantitative files) contain ex-
perimental results describing the effects of a given
irradiation on a given sample for the purpose of a given
damage to the material. The material name and the
laser type may be insufficient to characterize the file
where the data are stored. In this case, some other
parameters may be necessary to define completely
which file contains the proper data. These parameters
file descriptors will be noted, since they characterize
a file. Material name, laser type and damage type
are particular files. However, they stay out of the
property file descriptor because they appear in all the
files. Information concerning the damage type stays in
the object structure as the class name of one of the
parents of the object-file.

KBS is a set of rules acting through the object
knowledge. The rules are grouped in islands, each of
them having a particular purpose. The rules managing
the retrieval process are split into four parts (see
Figure 3).

The first part searches file names, which will be
necessary (in part) to answer the user question. To
reach this goal, if the second type of the acquisition



Wrapping Data for Querying

of the queries (see the section of Architecture of Q2)
is selected, then one is asked for the topic of his/her
request and the field descriptor linked to this topic.
If not, depending on the content of the queries, an
exhaustive search algorithm, not described here, will
be applied to find the topic’s name. Then, pattern
matching is done on the object representation of the
files and the chosen files are linked to a common object.

The second rule set creates a parameter-object for
each parameter of the studied domain. The parameter
corresponding to the information requested by the user
is assigned to the unknown class.

The third part is designed to instantiate all the
objects created by the previous rule set. Known
parameters are directly required from the user and
assigned to the known class, whereas the unknown
is found by means of the external loop through the
encoder and accommodator (interpolator). Its value is
put in the corresponding object.

The last part stores all information contained in
the parameter-objects into objects, which are domain
specific. Then, it checks whether some other files have
to be investigated. If this is the case, the previous rule
set is triggered again; otherwise an extern C program is
called to display the results which have been computed.

Examples of Rules

The following examples show some NEXPERT-based
rules. When all selected files are handled, the display
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module of the following rule creates the text-file,
namely, dispfile, summarizing all the results. It will
then be used to display the results.

If SelectedFiles.nbr is precisely equal to 1

Then display_results is confirmed.

And Execute "Display"(QATOMID=<|Irradiation|>;QSTRING =
"V(FileKey.unknown_value)";)

dispfile.txt"QKEEP=TRUE; QWAIT=FALSE;

The following rules illustrate the iterative process
for storage of the values to be determined, using other
rules (e.g. save, instantiation), as well as for displaying
the results.

If SelectedFiles.nbr is greater than 1
And there is evidence of run
Then save is confirmed.

If SelectedFiles.nbr is greater than 1
And there is evidence of post_treatment
Then save is confirmed.

And Execute "GetRelatives"
(QATOMID=|KnownParam] ;
Q@STRING = "OBJECTS,QCHILDREN,
QEVERYLEVEL, QRETURN=KnownParam.type" ;)
And Execute 'GetRelatives
(QATOMID=|UnknownParam| ;
Q@STRING = "OBJECTS,Q@CHILDREN,
QEVERYLEVEL, QRETURN=UnknownParam.type" ;)
And Execute "Instantiation"
(QATOMID=‘File’ _\FileKey.objFile\,
|UnknownParam| . type,
|UnknownParam| .type";)
And Reset run.

Knowledge base system

" Damage typeT™ ~

| I
} { %\J/IatNamg? N— _I_ — -] File skimmer
asType? v
| A \<Eile]§esc_2?/ - |
: : From accomodation
| I, i
| ~ 7 Requested ™ ! Knowled
_ ge manager
| \ information? - + - T
! S — | 1
| I i
| I i
| o : /
: f\inown values ?/\~— —t— =] General instanciation . _ // Towards encoder
| T I
b I / _
Vi Final treatment
Vd
- Perfo post-treatment

Data storage

Qutput

- 7
Dlsplltay - =—"%utside modules
results —>Inference link

J — _=Data flow
Communication towards

Figure 3. Reasoning Q2 overview.
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If SelectedFiles.nbr is less than or equal than 1
And there is evidence of post_treatment
Then save is confirmed.
And Execute "GetRelatives"
(QATOMID= | KnownParam| ;
@STRING = "OBJECTS, QCHILDREN,
QEVERYLEVEL ,QRETURN=KnownParam.type" ;)
And Execute "“GetRelatives"
(QATOMID=|UnknownParam| ;
Q@STRING = "OBJECTS,QCHILDREN,
QEVERYLEVEL , QRETURN=UnknownParam.type";)
And Execute "Instantiation"
(QATOMID=‘File’ _\FileKey.objFile\,
|UnknownParam| . type,
|UnknownParam| .type";)

The rule in charge of save (with high priority)
first verifies if there are still one or more files to be
inspected. If any, this rule calls the instantiation-
rule with object-argument, wherein two distinct lists
of known and unknown variables have been passed.
Readers may refer to [27, pp 22-41] for a complete
description of rules and their interactions.

ARCHITECTURE OF Q2

Q2 is designed to retrieve information and has been
implemented using the C language and NEXPERT
tool. That is to say, Q2 analyzes the input, stores
the knowledge related to the input request, draws
inferences from that knowledge, searches information
related to the query and generates the answer. Q2
includes the following components: Knowledge Base
System (KBS), lexicon, encoder, decoder, data re-
triever and several tabulated files. Figure 4 shows the
schematic of Q2.
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Acquisition of User-Queries

Two variants of the acquisition are available in Q2.
The first one is designed for domain experts who are
supposed to be familiar with background knowledge
of the application at hand. For instance, a practi-
tioner of laser-material interaction, when querying for
determining the perforation time of a given steel, is
supposed, not only to provide the name of the material,
but, in general, its type, subtype and etc., such as
steel35ncd13. Therefore, it is not so strange to expect
receiving as the value of the templates of the query, the
long strings, such as the following:

“Material name of the target = steel35cnd”.

The second variant is conceived for non-experts
and will be used below for illustration of an example
of query processing. In this variant, KBS sends a list
of topic-queries to the user. After having received the
user-response, first, it searches and selects the list of
topic-dependent questions (see Step 2 of the example
given below). Second, according to the content of
the user-response, KBS chooses the list of dependent-
implicative questions and stores the user-response.
Apart from the metabase and interpolator described,
the short descriptions of other components of Q2 (i.e.
decoder and encoder) are given below.

Decoder

It works on the lexicon, a simple database with at least
two fields. The first field contains used KBS terms,
whereas the second represents the term’s short form
(or abbreviation). This module decodes KBS terms in
order to be usable by the encoder for being used by the

base
|

Encoder

Legend

Flow of data
—# Flow of control

[ Program

DO Permanent storage structur

©Tempory storage structure

' reasoning rule
system

Domain specific
rule system

Decoder

Interpolation

A\ Object
Representation

Data base

Figure 4. Architecture of Q2.
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interpolation of selected plots. It is important to note
that the lexicon can be located wherever a translation
is necessary.

Encoder

The purpose of this module is to obtain the retrieval
information for the interpolation. The Encoder mod-
ule simplifies the decoder’s result and uses the data
retriever file for retrieval purposes. First, the encoder
module gets the name of the file, second, by using the
data retriever file it replaces the names of known and
unknown user-question parameters by field numbers
(see Step 6 of the following subsection of an example).
Finally, KBS receives the response given by the
interpolation and transmits it to the user.

Example

By way of the second variant of the acquisition of
user-queries described above, the implication of the
presented architecture for the testing example will be
illustrated step by step.

e How long does it take to perforate a 2 mm thick sheet
of steel with a CO» laser irradiation of 3500W /cm??

Step 1: Topic Question Name
KBS interface displays the topic-question list and waits
for the user to choose: Topic-Question Name? =
damage.

Note that the left and right side of = stand for
the message sent by Q2 and user-response, respectively.

Step 2: Dependent-Topic Question Answering

According to the previous response given by the user,
there exist four dependent-topic questions, listed be-
low:

Kind of damage under study? = perforation
Material name of the target? = steel35ncd13
Surface condition of the sample? = UNKN.

Step 3: Identification of Reservoir Names

The later response, unknown, means that there exist
several reservoirs (files), which must be inspected. By
virtue of the three first user-responses: Perforation
(class name), material and laser names, simple pattern
matching is applied. The results are the filenames,
namely, “PSS” (Polished Sheet of Steel) and “RSS”
(Rectified Sheet of Steel).

Step 4: Implicative Questions

Due to the results in the third step, after having
analyzed the responses, KBS selects a set of additional
questions which are called the implicative questions.

Power density of the irradiation? = 3500
Thickness of the target? = 2 mm.
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At the end of this step, two items of residual informa-
tion are obtained, namely,

(RI1) : PSS, duration, pow_dens, 3500, 2 and
(RI2) : RSS, duration, pow_dens, 3500,2.

KBS instantiates by pattern-matching and by the laser
name (COz) which uses the power density parameter.

Step 5: Short Form Given by Decoder

KBS will send to the decoder module the current resid-
ual information: “PSS, duration, pow_dens, 3500”.
The value associated to the thickness is two. Via its
counterpart (the value associated with the thickness of
1 mm) and by the interpolator, the searched value is
calculated. In this phase of processing, the lexicon will
be called by the decoder in order to build a short form:

input: PSS, duration, pow_dens, 3500
output: RSS, DRT, PD, 3500.

Step 6: Retrieval Information Obtained by Encoder
and Metabase

The encoder receives the results of the previous step,
namely, “PSS, DRT, PD, 3500” and uses the metabase
in order to find the appropriate retrieval information:

input: PSS, DRT, PD, 3500
output: PSS, 2, 1, > 3500.

Recall that “PSS, 2, 1, > 3500” means that the proper
reservoir name is “pss.tab”. The searched information
must be retrieved by the second field and the known
variable is in the first field. This field is arranged in an
increasing order and the known variable value is 3500.

Step 7: Interpolation

If required, as is the case for the current example, this
step will be solicited. For the thickness value (2 mm),
the interpolator will give the searched time, say, z1,
therefore:

input: 3500 and interpolator
output: z1 (via the interpolator given in the
Figure 1.).

After passing from Step 4 to Step 7, the second
residual information (i.e. R12) is considered and the
values 22 are obtained. Finally, the responses to the
user-question are:

For polished sheet of steel = z1
For rectified sheet of steel = z2.

CONCLUSIONS

In this paper, based on the notion of functional de-
pendency, a plan to form the wrapper, with respect to
the query processing, was devised for performing the
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analysis of the queries and then finding the searched
information, including the implicit ones using other
components of Q2.

The advantage of this work, compared to tradi-
tional query processing, can be advocated by a number
of reasons, including: (1) Querying is user friendly, in
the sense that it allows a free-syntax by just expressing
the task by way of the long strings; (2) Compact
representation (of the keys) and fast lookup is done by
our own efficient method based on authomata theory
and machine learning; (3) The implicit information are
identified by wrapper and other component of Q2.

Although, it is believed that this present work has
obvious advantages, with respect to both conventional
query processing and mining tasks of query processing,
however, a fair comparison (i.e. same data, same
machine, etc.) is desired.
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